INDUSTRIAL TEST OF INTEGRATED CIRCUITS

Digital Test Training on V93k ATE

Planning: 5 sessions

#	Date	Duration
1	September 9 th 14h00-15h30	1.5hrs
2	September 9 th 15h30-18h30	3hrs
3	September 23 rd 14h00-17h00	3hrs
4	September 30 th 14h00-17h00	3hrs
5	November 4 th 14h00-17h00	3hrs
Tota	I	13.5hrs

"Integrated course"

• Mix of lectures & labs/exercises during all sessions

Evaluation

- No formal exam but continuous assessment
- Mini-tests performed during the sessions
- Final grade: Sum of mini-test scores

CONTEXT

Major steps in the production of Integrated Circuits

OBJECTIVE OF THIS COURSE

• Acquire the fundamentals of digital ICs industrial testing

 Design & Manufacturing adjustments
 Basis for mass-production test program

OBJECTIVE OF THIS COURSE

Acquire the fundamentals of digital ICs industrial testing

 Design & Manufacturing adjustments

Basis for mass-production test program

Concepts

- Equipment
 - HW: Physical resources of the ATE
 - SW: Tools to control the ATE
- Test Program
 - Test methods
 - Test flow
 - Test results analysis
 - Debug & diagnosis

Mass-volume production (further millions of pieces)
Go/no-go tests Pass/Fail results
START Continuity Test Functional DC Tests AC Tests
Test time: major factor contributing to the testing costs Responsible for the quality of devices sent to customers

INDUSTRIAL ENVIRONMENT

• Automatic Test Equipment (ATE)

Test Floor

TARGETED COMPETENCIES

Key Learnings

Concepts

- Equipment
 - HW: Physical resources of the ATE
 - SW: Tools to control the ATE
- Test Program
 - Test methods
 - Test flow
 - Test results analysis
 - Debug & diagnosis

LEARNING STEPS

(1)

(3

4

(5

Datasheet analysis

Tester HW/SW, Basic elements (Pin, Level, Timing, Pattern)

Test methods: first tests (Continuity & functional/structural tests)

Test program development

Test methods: parametric tests (DC & AC tests)

PART 1

- Device pins
- Functionality
- Operating conditions
- **Performances** (typical/guaranteed limits)

DEVICE UNDER TEST: 74ACT299

8- I/O universal shift/storage register

Pin Names	Description
CP	Clock Pulse Input
DS ₀	Serial Data Input for Right Shift
DS ₇	Serial Data Input for Left Shift
S ₀ , S ₁	Mode Select Inputs
MR	Asynchronous Master Reset
OE ₁ , OE ₂	TRI-STATE Output Enable Inputs
1/00-1/07	Parallel Data Inputs or
· ·	TRI-STATE Parallel Outputs
Q ₀ , Q ₇	Serial Outputs

FUNCTIONALITY: TRUTH TABLE

	Inp	uts		Response
MR	S 1	S ₀	СР	
L	Х	Х	Х	Asynchronous Reset; Q ₀ –Q ₇ = LOW
Н	Н	Н	~	Parallel Load; I/O $_n \rightarrow Q_n$
Н	L	Н	~	Shift Right; $DS_0 \rightarrow Q_0, Q_0 \rightarrow Q_1$, etc.
Н	Н	L	~	Shift Left, $DS_7 \rightarrow Q_7$, $Q_7 \rightarrow Q_6$, etc.
Н	L	L	Х	Hold

• 4 Modes of operations controlled by (S_1, S_0)

- Parallel Load: $(S_1, S_0) = 11$
- Shift Right: $(S_1, S_0) = 01$
- Shift Left: $(S_1, S_0) = 10$
 - $(S_1, S_0) = 00$
- Hold:
- Asynchronous reset controlled by \overline{MR}
 - active on $\overline{MR} = 0$

- H = HIGH Voltage Level
- L = LOW Voltage Level
- X = Immaterial
- _ = LOW-to-HIGH Transition

Basis to develop functional test pattern

FROM DATA SHEET TO FUNCTIONAL TEST PATTERN

- Principle: Use of the truth table to define a test pattern (sequence of test vectors)
- Objective: Define a test pattern that checks all functionalities

	Inputs			Response
MR	S ₁	S ₀	СР	
L	Х	Х	Х	Asynchronous Reset; $Q_0-Q_7 = LOW$
Н	Н	Н	~	Parallel Load; I/O _n \rightarrow Q _n
Н	L	н	~	Shift Right; $DS_0 \rightarrow Q_0$, $Q_0 \rightarrow Q_1$, etc.
Н	Н	L	~	Shift Left, $DS_7 \rightarrow Q_7, Q_7 \rightarrow Q_6$, etc.
Н	L	L	X	Hold

...

Master reset Hold Parallel Load (10000000) Hold Shift Right x8 – DS0=0 Parallel Load (01010101) Shift Left x8 – DS7=1

M R	C	S 0	S 1	DS	DS	I O	I O	I O	I	I O	I O	I O	I O	Q 0	Q 7	INSTRUCTIONS
TX .	•	Ū	-	0	7	0	1	2	3	4	5	6	7	0		
0	1	1	0	0	1	1	1	1	1	1	1	1	1	Х	Х	Master Reset
1	1	0	0	0	0	L	Ц	Ц	L	Ц	L	L	Ц	Ц	L	Hold
1	1	1	1	0	0	1	0	0	0	0	0	0	0	H	L	Parallel load
1	1	1	0	0	0	L	Η	L	L	L	L	L	L	L	L	Shift right
1	1	1	0	0	0	L	L	H	L	L	L	L	Ц	L	L	Shift right
1	1	1	0	0	0	L	L	L	Η	Ц	L	L	Ц	L	L	Shift right
1	1	1	0	0	0	L	L	L	L	Η	L	L	L	L	L	Shift right
1	1	1	0	0	0	L	L	L	L	L	н	L	L	L	L	Shift right
1	1	1	0	0	0	L	L	L	L	L	L	Н	L	L	L	Shift right
1	1	1	0	0	0	L	L	L	L	L	L	L	н	L	н	Shift right
1	1	1	0	0	0	L	L	L	L	L	L	L	L	L	L	Shift right
1	1	1	1	0	0	0	1	0	1	0	1	0	1	L	н	Parallel load
1	1	0	1	0	1	н	L	н	L	Н	L	н	н	н	н	Shift left

cnfm

FUNCTIONAL TEST CONCEPT

Test Result: No Measurement Value Only Pass/Fail

OPERATING CONDITIONS

DATA SHEET Recommended Operating Conditions

Supply voltage (v _{CC})		
(Unless Otherwise Specified)		
 'AC	2.0V to 6.0V	_
'ACT	4.5V to 5.0V	
Input Voltage (VI)	0V to V_{CC}	
Output Voltage (V _O)	0V to V _{CC}	
 Operating Temperature (T _A)		_
74AC/ACT	-40°C to +85°C	Sec.
54AC/ACT	−55°C to +125°C	and the second second
Minimum Input Edge Rate (ΔV/Δt) 'AC Devices V _{IN} from 30% to 70% of V _{CC}		
V _{CC} @ 3.3V, 4.5V, 5.5V	125 mV/ns	
Minimum Input Edge Rate (ΔV/Δt) 'ACT Devices		
V _{IN} from 0.8V to 2.0V V _{CC} @ 4.5V, 5.5V	125 mV/ns	

* Production Test

PERFORMANCES

CLASSICAL PARAMETRIC

- Input pins: V_{IH}/V_{IL}

- Output pins: V_{OH}/V_{OL}

- Input pins: I_{IN} (leakage)

- Supply: *I_{CC}* (consumption)

DC TESTS

Voltage

Current

		acie	1151103	FORAC	Family Devices				
			74ACT		54ACT	74ACT			
Symbol	Symbol Parameter		т _А =	25°C	T _A = −55°C to +125°C	T _A = −40°C to +85°C	Units	Conditions	
			Тур		Guaranteed Li	imits			
VIH	Minimum High Level Input Voltage	4.5 5.5	1.5 1.5	2.0	2.0 2.0	2.0 2.0	V	$V_{OUT} = 0.1V$ or $V_{CC} - 0.1V$	
VIL	Maximum Low Level Input Voltage	3.0 4.5	1.5 1.5	0.8	0.8 0.8	0.8 0.8		$V_{OUT} = 0.1V$ or $V_{CC} - 0.1V$	
V _{OH}	Minimum High Level	4.5 5.5	4.49 5.49	4.4 5.4	4.4 5.4	4.4 5.4	V	$I_{OUT} = -50 \mu A$	
		4.5 5.5	0.0001	3.86 4.86	3.70 4.70	3.76 4.76	v	$V_{IN} = V_{II} \text{ or } V_{IH}$ IOH -24 mA -24 mA	
V _{OL}	Maximum Low Level Output Voltage	4.5 5.5	0.001 0.001	0.1 0.1	0.1 0.1	0.1 0.1	V	$I_{OUT} = 50 \ \mu A$	
		4.5 5.5		0.36	0.50 0.50	0.44 0.44	v	$V_{IN} = V_{II}$ or V_{IH} IOL 24 mA 24 mA	
I _{IN}	Maximum Input Leakage Current	5.5		±0.1	±1.0	± 1.0	μA	$V_{I} = V_{CC}, GND$	
ICCT	Maximum I _{CC} /Input	5.5	0.6		1.6	1.5	mA	$V_{I} = V_{CC} - 2.1V$	
IOLD	†Minimum Dynamic	5.5			50	75	mA	$V_{OLD} = 1.65V Max$	
IOHD	Output Current	5.5			-50	-75	mA	V _{OHD} = 3.85V Min	
ICC	Maximum Quiescent Supply Current	5.5		4.0	80.0	40.0	μΑ 🤇	$V_{IN} = V_{CC}$ or GND	
I _{OZT}	Maximum I/O Leakage Current	5.5		±0.3	±5.5	± 3.0	μΑ	$V_{I}(OE) = V_{IL}, V_{IH}$ $V_{I} = V_{CC}, GND$ $V_{O} = V_{CC}, GND$	

DC Electrical Characteristics For 'ACT Family Devices

Note: I_{CC} limit for 54ACT @ 25°C is identical to 74ACT @ 25°C.

*All outputs loaded; thresholds on input associated with output under test.

†Maximum test duration 2.0 ms, one output loaded at a time.

Limit values for parametric DC tests (& test conditions)

Note 10: Voltage Range 5.0 is 5.0V ± 0.

PERFORMANCES

				V		T 1250	c	T 40%	C to		_	
				Vcc		IA = +23	с -	IA = -40*0	5 to +83°C			
Symbol	1 '	Parameter		(V)		C _L = 50 p	F	C _L =	50 pF	Units		
				(Note 9)	Min	Тур	Max	Min	Max		_	
мах	Maximum Input	t Frequency		5.0	120	1/0		110		MHZ	_	
ЧРСН	Propagation De CP to Q ₀ or Q ₇	elay (Shift Left or R	light)	5.0	4.0	8.5	12.5	3.0	14.0	ns		
t _{РНL}	Propagation De CP to Q ₀ or Q ₇	elay (Shift Left or R	light)	5.0	4.0	9.0	13.5	3.5	15.0	ns	_	
t _{PLH}	Propagation De	elay		5.0	4.5	8.5	12.5	4.5	13.5	ns	_	
t _{PHL}	Propagation De CP to I/On	lay		5.0	5.0	9.5	15.0	4.5	16.5	ns	_	
t _{PHL}	Propagation De	elay		5.0 4.0		14.0	15.0	4.0	18.0	ns	-	
t _{PHL}	Propagation De MR to I/O	AC Op	erating	g Req	uirem	ents fo	or ACT					(Inputs)
t _{erru}	Output Enable						Vcc	T _A = +25°C C _L = 50 pF		TA	= -40°C to +85°C	
	OE to VO	Symbol		Parameter		(V)	C _L = 50 pF			Units		
t _{PZL}	Output Enable							Тур	Typ G	Guaranteed Minimum		I
teur	OE to I/On Output Disable	te	Setup Time So or S ₁ to	e, HIGH or CP	LOW		5.0	2.0	5.0)	5.5	ns
+	OE to VOn	ч	Hold Time, Se or Se to	HIGH or L	ow		5.0	-2.0	(1.0		1.0	ns
Wate 9: Valta		t _s	Setup Time	Setup Time, HIGH or L			5.0	1.5	(4.0		4.5	ns
Note 5. Volta	ige Nange 5.0 is 5.	ţн	Hold Time,	HIGH or L	ow		5.0	-1.0)	1.0	ns
		t _s	Setup Time	e, HIGH or	LOW		5.0	1.5	4.5)	5.0	ns
		ţн	Hold Time,	HIGH or L	ow		5.0	-1.0)	1.0	ns
		tw	CP Pulse V	7 to CP Nidth	M			I • -				I
		tw	MR Pulse	Width, LOW	, X	5	Lim	nit v	val	UP	s to	r n
			1									

CLASSICAL PARAMETRIC AC TESTS

Input pins

- Setup Time
- Hold Time
- Output pins
 - Propagation delay

Limit values for parametric AC tests (test conditions)

SUMMARY: FROM DATASHEET TO TEST PLAN

Exercises:

1

74ACT299 Datasheet Analysis

Part 2

- HW resources
- SW interface
- Basic elements
 - Pin
 - Level
 - Timing
 - Pattern

CNFM TESTER: COMPACT VERIGY V93K PINSCALE

Digital pins => 200 Ks/s up to 3.6 Gs/s

B Device Power Supply pins

Analog Source pins => Audio: 1.024 Msps, 24-bit => Video:100 Msps, 14-bit

Analog Digitizer pins => Audio: 200ksps, 24-bit, 50kHz BW => Video : 65Msps, 14-bit, 15MHz BW/100MHz

INTRODUCTION TO TESTER HARDWARE

2

Specific electrical connector with an integrated helical string (high durability and good resilience to mechanical shock and vibration)

- **Device Power Supply**
- **Clock board**
- Pin Electronics (PE)

PIN ELECTRONICS

Electrical signal = Combination of level and timing information

VIH

10

PIN ELECTRONICS - TIMING

- Concept
 - "actions" associated to "edges"
- Example

Tester timing resources per pin

- Input pins: 8 drive edges (d1, d2, ..., d8)
- Output pins: 8 receive edges (r1, r2, ..., r8)
- I/O pins: 8 drive edges + 8 receive edges

Actions

- Drive actions
 - 0: Drive '0'
 - 1: Drive '1'
 - Z: High impedance
 - N: No action
- Receive actions (edges)
 - L: Compare to 'Low'
 - H: Compare to 'High'
 - M: Compare to 'Intermediate'
 - X: Don't care

PIN ELECTRONICS - LEVEL

PIN ELECTRONICS - LEVEL

PIN ELECTRONICS - LEVEL

28

PIN ELECTRONICS - PMU

Parametric Measurement Unit

2 modes of operation

- Current generator & Voltage Meas
- Voltage generator & Current Meas 🕗

DPS paramete	ers
• vout (V)	power supply voltage
• t_ms (ns)	setup time
• ilimit (A)	connect current limit (to prevent destruction of the DUT)

Tester connection

Only 8 offline licenses run at the same time during practice (memory issues)

- 2 on verigyon2016
- 6 on verigyoff2017

Work in "trio"

Login trainXv93	Password #trainXv93#	Y: VNC display number	M: Default machine for offline connection
train1v93	#train1v93#	71	verigyon2016
train2v93	#train2v93#	72	verigyon2016
train3v93	#train3v93#	73	verigyoff2017
train4v93	#train4v93#	74	verigyoff2017
train5v93	#train5v93#	75	verigyoff2017
train6v93	#train6v93#	76	verigyoff2017
train7v93	#train7v93#	77	verigyoff2017
train8v93	#train8v93#	78	verigyoff2017

Local PC connection

- Login: etudiant
- Password: &tudiant

- Procedure to start Graphical Interface of tester SW
 - 1/ Connect to a **verigy** machine using **VNC**

Screen of verigyoff2017

Screen of verigyon2016

- Procedure to start Graphical Interface of tester SW
 - 2/ Launch SmarTest from the start menu " 🤜 " ("RedHat" menu)

verigyoff2017

verigyon2016

AT STARTUP: WORKSPACE SELECTION

	Vorkspace Launcher	×						
	Select a workspace							
	SmarTest Eclipse Workcenter stores your projects in a folder called a workspace.							
	Workspace: /home/train1v93/workspace_MONTPELLIER]						
NEVER SELECT THIS OPTION	Use this as the default and do not ask again OK Cancel]						
	Workspace stores users' interface configuration Do not mix it with test program explorer path							

FIRST STEP: CREATE A DEVICE

1977				
V Setup - SmarTest Eclipse Workcenter - Eile Edit Navigate Search Project Run Eile Edit Navigate Search Project Run	/home/jspreux/workspace_6	<u>i</u> elp		
	<u>R</u> esults	* • • • • • • • • • • • • • • • • • • •		
	Memory Test	*		 To create a device. click
	<u>A</u> nalog	₽ }		
-> Г	Production System	>		93000 > Device > New Device
	<u>D</u> evice UI updates susper	ded 🌧 Change Device	Create a new or change to an existing device	
	Connect			
	Break MCD			

• Device creation will automatically generate all sub-directories necessary to develop & store the test program specific to this device

38

EXITING SMARTEST

93000 Design - /root/worl	korder – SmarTest Eclipse Workcenter
<u>Pile E</u> uit <u>N</u> avigate Se <u>a</u> New	Shift+Alt+N
Open File	
<u>C</u> lose	Ctrl+W
C <u>l</u> ose All	Shift+Ctrl+W
<u>S</u> ave	Ctrl+S
Save <u>A</u> s	
Sav <u>e</u> All	Shift+Ctrl+S
Rever <u>t</u>	
Mo <u>v</u> e	
Rena <u>m</u> e	F2
Refresh	F5
Convert Line Delimiters To	>
Print	Ctrl+P
Switch <u>W</u> orkspace	
≧a <u>I</u> mport	
🖾 Exp <u>o</u> rt	
P <u>r</u> operties	Alt+Enter
E <u>x</u> it	

• To exit SmarTest, click File > Exit

To kill the entire SmarTest process, type the following command in a Terminal window:

/opt/hp93000/soc/prod_env/lbin/kill_smarTest

EXITING VNC

First Steps with SmarTest - Part 1

Lab:

(2)

INTRODUCTION TO BASIC ELEMENTS

PINS

- First element to be defined
 - Link between Pin Names and Tester Channels
 - Definition of Pin Type

Pin Name	Pin Type	Tester Channel
CLK	Input	10101
D	Input	10102
Q	Output	10103
_Q	Output	10104
V _{CC}	Supply	10201

PIN SETTING IN SMARTEST

44

PIN SETTING IN SMARTEST

🞫 Test Program Explorer 🕱 🦵		[¢] ∗Pin	Setting	x					
/usr/project/74ACT299 👔 📄 🕀									
▽ 🗇 pins	•	Site :	1	<u>∽</u> Of 1		CO	NTEXT: DE	FAULT	¥
🔗 Pin Setting			Pin No	Pin Name	Mode	Туре	DUT Board	Tester Channel	
all_in		1	12	CP	std	i	0.0	10102	
all_out		2	18	DS7	std	i	0.0	10108	
<pre></pre>		3		DS0	std	i	0.0	10101	
Sio_in Define Site		4	19	S1	std	i	0.0	10109	
🔗 io_ou 🚳 Apply		5	1	S0	std	i	0.0	10110	
[₽] io_pins		6	9	MR	std	i	0.0	10116	
🔗 mode		7	17	Q7	std	o	0.0	10107	
🔗 ser_in		8	8	Q0	std	0	0.0	10115	
<mark>∳⁹ser_out</mark>		9	16	I/07	std	io	0.0	10 106	
👂 🔁 Ports		10	4	I/O6	std	io	0.0	10111	
Core Allocation		11	15	I/O5	std	io	0.0	10105	
🔗 DPS Channel Mode		12	5	I/O4	std	io	0.0	10112	•
👂 🔁 Utility Purpose	•	•	•			- 111			>

Error message if:

Levels Timing

Pins

- test channel already used
- test channel unavailable

No error message if:

 test channel exists, even if the DUT pin is not connected to this channel

PIN SETTING IN SMARTEST

Defining Goups

BASIC ELEMENTS

2 BASIC ELEMENTS

LEVEL SETTING IN SMARTEST

Pins Levels Timing Pattern FUNCTIONAL TEST

LEVEL SETTING IN SMARTEST

LEVEL EQUATION SET EDITOR

LEVEL SETTING IN SMARTEST

X Level Setup

LEVEL SETTING IN SMARTEST

Define a format to display pin groups instead of all individual pins

ACTUAL SETTINGS

"Show I/O Eqn. & Specs Results"

Select Edit Doc	For	nat 🔟											standard
Eqn# 2 Sps# 1	Lse	et# 1	of 3	Level [no termin	nation							Î
Specification Vcc	0 = 4.	5v] Equat	ion spec	\$			(Fast) Std				
pin/group name	pin type	leve low	l[V] high	mode	llev[V]	term Liol[mA]	ination Ioh[mA]	swing	loffset	mode	clamp []ow[V]	high[V]	
CP mode ser_in io_in io_out ser_out	i i i o o	0.000 0.000 0.000 2.200 2.200	4.250 4.250 4.250 4.250 2.300 2.300	off off off off						off off off off	-2.000 -2.000 -2.000 -2.000 -2.000	7.000 7.000 7.000 7.000 7.000	
H													→

Waveform Tables

TIMING

- Concept
 - Define waveforms by associating actions to edges
 - Specify tester period and position of edges

Timing Sets

Pins Levels Timing Pattern FUNCTIONAL TEST

TIMING PROGRAMMING

Programming – Clock

Waveforms

N° 0 - d1:0 d2:0 (Clock Inactive) N° 1 - d1:1 d2:0

Edges Position

d1: CP_ref d2: CP_ref + CP_width or after

Programming – I/O Pins

Waveforms N° 0 - d1:0 r1:X N° 1 - d1:1 r1:X N° 2 - d1:Z r1:L N° 3 - d1:Z r1:H N° 4 - d1:Z r1:X N° 5 - d1:0 d2:1 d3:0 r1:X N° 6 - d1:1 d2:0 d3:1 r1:X

•••

Edges Position d1: Ons d2: CP_ref - setup_time or before d3: CP_ref + hold_time or after r1: CP_ref + prop_delay or after

58

	Wave	form
	Na	me
Programming – I/O	Pins	
Waveforms	Dev Cycle	
N° 0 - d1:0 r1:X	"0"	
N° 1 - d1:1 r1:X	"1"	
N° 2 - d1:Z r1:L	"L"	
N° 3 - d1:Z r1:H	"H"	
N° 4 - d1:Z r1:X	"Х"	
N° 5 - d1:0 d2:1 d3:0 r1:X	"SBC_1"	
N° 6 - d1:1 d2:0 d3:1 r1:X	"SBC_0"	

Edges Position		
d1: Ons		

d2: CP_ref - setup_time or before d3: CP_ref + hold_time or after r1: CP_ref + prop_delay or after

59

TIMING SETTING IN SMARTEST

Pins Levels Timing Pattern FUNCTIONAL TEST

TIMING SETTING IN SMARTEST

Pins Levels Timing Pattern FUNCTIONAL TEST

TIMING SETTING IN SMARTEST

TIMING EQUATION SET EDITOR

TIMING SETTING IN SMARTEST

Timing Setup

W	a	/ef	for	m	
Vi	isu	al	iza	ati	on

"Show eqn. & Specs Results"

Select Edit DevCy	JcEdit Check Doc Displa	y Format				standard
Eqn# 1 Sps# 1	Tset# 1 of 2		Port:@] Df.DC:	cyc: 2
Specification gr	oss_func_specs	Equation	gross_func_e	an		
Wave Table gr	oss_func_wtb	Timing	20MHz			
pin/group	DevCyc		i/o ^{cycle>}	0		1
CP 1	l i i i i i i i i i i i i i i i i i i i		i 3	1		
mode ()		i	ji .	2	
			3 <u>1</u>	2		
ser_in ()		2 1			
			i			
io_pins ()	H	2 <u> 1</u>		1	
			2		× 1	
ser_out ()		0		Î.	
			2		1	

Levels Timing

Pins

View with "**format pins**" active, i.e. only one waveform displayed for each pin or pin group

To see all waveforms defined for a given pin or pin group, click on the name of a pin or pin group and choose "one pin"

¦\$elect Edit DevCycEdit Che
edit waveforms & timing show eqn. & specs results
select specification
device cycle
port
period edge delay marker description
format pins 🖕 one pin
shapes
edit specifications edit equations edit wave tables edit clocksets

PATTERN

- Principle
 - Sequence of waveform indexes/names that will be "played" by the test processor

PATTERN

- Principle
 - Sequence of waveform indexes/names that will be "played" by the test processor

BASIC ELEMENTS

Pins

Levels

Timing

Pattern

Lab & Exercises: First Steps with SmarTest - Part 2

LEARNING STEPS

• Continuity Test

• Functional/Structural Tests

TEST METHODS: FIRST TESTS

• Test Flow planned from Datasheet Analysis

Actual Production Test Flow

3 TEST METHODS: FIRST TESTS

CONTINUITY TEST

(also called "Open/Short Test" or "Contact Test")

- Purpose
 - Verify the connection between ATE and DUT pins (no open)
 - Verify that no DUT pin is shorted to power/ground

CONTINUITY TEST

(also called "Open/Short Test" or "Contact Test")

• Principle

cntn

- Force I & Measure V: resulting voltage should be a diode voltage (ESD protection diodes)

CONTINUITY TEST

(also called "Open/Short Test" or "Contact Test")

• Principle

cnfn

- Force I & Measure V: resulting voltage should be a diode voltage (ESD protection diodes)

CONTINUITY TEST

(also called "Open/Short Test" or "Contact Test")

- Principle
 - Force I & Measure V: resulting voltage should be a diode voltage (ESD protection diodes)

Other option: Implementation with Programmable Load (PL)

75

TEST METHODS: FIRST TESTS

FUNCTIONAL TEST

- Purpose
 - Verify that the DUT is functionally "alive"
- Principle
 - Apply a test pattern that exercises the device functionality & compare the DUT response with the expected one
 - Test performed with relaxed level & timing conditions

•
$$V_{IL} = 0V$$
, $V_{IH} = V_{CC}$
• $V_{OL} = \frac{V_{CC}}{2} - 10\% * V_{CC}$, $V_{OH} = \frac{V_{CC}}{2} + 10\% * V_{CC}$
• $f < f_{max}$
• $T_{setup} > T_{setup-DS}$, $T_{hold} > T_{hold-DS}$
• $T_{obs} > T_{prop-DS}$

- Output: PASS/FAIL result

FUNCTIONAL VS. STRUCTURAL TEST APPROACH

FUNCTIONAL

- Test pattern is defined with the objective to exercise the device functionality
 - "manual" generation based on the knowledge of the truth table

STRUCTURAL

- Test pattern is defined with the objective to verify the absence of defects
 - automatic generation based on fault models & structural circuit description

FUNCTIONAL VS. STRUCTURAL TEST APPROACH

• Execution on ATE: no fundamental difference

Exercise:

LEARNING STEPS

- Test Flow Concept & Main Elements
- Test Flow Creation & Execution in SmarTest

INTRODUCTION TO TEST FLOW CONCEPT & MAIN ELEMENTS

TEST FLOW CONCEPT

- Sequential organization of device tests with their bins
- Tests order, pass/fail branching and binning determine the execution of the test flow

Main Test Flow Elements

Testsuites

• Test Method + Level/Timing/Pattern Settings

Bins

• Good or Bad (STOP point)

4 TEST FLOW CONCEPT

- Sequential organization of device tests with their bins
- Tests order, pass/fail branching and binning determine the execution of the test flow

Main Test Flow Elements

Testsuites

• Test Method + Level/Timing/Pattern Settings

Bins

• Good or Bad (STOP point)

TESTSUITE

TEST METHOD

- 2 ways of calling a test method
 - Predefined "Test Function"
 - Only test conditions and limits to fill
 - Hidden firmware code, the user can't modified
 - Easy to understand for beginners

- C/C++ code

- The user programs test conditions, tester HW (relays), test execution, comparison to test limits, test result reporting and P/F outcome
- Not easy to implement, more flexibility

🔲 Properties 🕱 🛛 🔠 Outline	
type filter text	
Property	Value
	dc_tml.DcTest.Continuity
	@, -50[uA], 4[ms], ProgLoad, BPOL, ON, passVolt_mV, ReportUI
pinlist	0
testCurrent	-50[uA]
settlingTime	4[ms]
measurementMod	ProgLoad
polarity	BPOL
prechargeToZero	V ON
testName	passVolt_mV
output	ReportUI
	, 200 <= X <=800
Test Number	
Limit Value	200 <= · X <= · 800
✓ Flags	

<pre>RESULT Edigital_tests::continuits(double _results[4]) // add your code PPMU_SETTNK setting1; setting1.pin("0").iForce(50 uA).min(50 mV).max(100 mV).iRange("100uA") PPMU_RELAY relay1.pin("0").istatus("PPMU_ON"); Close PPMU relay relay1.pin("0").status("ALL_OFF"); relay2.wait(1.3 ms); PPMU_MEASURE meas1; meas1.pin("0").execNode(TM::PVAL); PPMU_MEASURE meas1; Test technique: value TASK_LIST task1: PAULABALACHER</pre>	Set up: pin to test, force current and limits
<pre>task1.add(setting1).add(relay1).add(relay2); task1.execute(); return S_0K; 2. Close 3. Perform</pre>	xecution order: y setup PPMU relay rm measurements on pins
4. Open	PPIVIO relay

4 TEST FLOW ELEMENTS

GOOD/BAD BIN

- To sort the devices
- Hardware and software bin numbers defined in the test program
 - Hardware bin number: controls the location where the DUT will be placed (tray or tube) after execution of the test program
 - Software bin number: keeps track of the various pass/fail categories (Statistics)

Top 10 Software Binni	ng	1 PASS	1004 thunderbird_real_bist_max	1400 vil_vih_vol_voh_max	1630 idd sleep max	601 thunderbird_ct_max	600 thunderbird_ic_max	1110 cont_pwr	500 thunderbird_ic_min	700 lvdsTest070731_nom	Others
Color											-
Pass/Fail		Р	F	F	F	F	F	F	F	F	-
Percentage		77.8%	7.3%	3.5%	3.2%	2.2%	1.9%	1.3%	1.3%	0.9%	0.6%
Total count		246	23	11	10	7	6	4	4	3	2
						0	Die X locations	1			
					0-				, , , ,		
File	D:/Qualtera/Galaxy/P61222.0U	_9D00646101_	20071228103119.stdf								
Map style	STRIP map (parts tested are P	ACKAGED DEV	ICES!)								
Total physical parts tested	316				- <u>v</u>				1 M I		
Parts processed	All Data / parts (any Bin)				tion						
Data from Sites	All sites				loca						
Product	om6361				e <						
Lot	P61222.0U				ēg_						
SubLot	9D00646101										
	P61222.0U-9D00646101				1						
Strip ID:											
Strip ID: Strip started	ven. déc. 28 13:54:09 2007					the second se					

List of Individual Maps

TEST FLOW CREATION & EXECUTION IN SMARTEST

4

TEST FLOW CREATION IN SMARTEST

MAIN STEPS

- 1. Create new testflow
- 2. Setup the "context"
- **3. Insert elements** (Testsuites & Bins)

4. Save testflow

TEST FLOW CREATION IN SMARTEST

1. Create new testflow

TEST FLOW CREATION IN SMARTEST

Necessary step to make all primary settings (pins/level/timing/pattern) available within the Testflow

2. Setup files assignation

3. Element insertion

Testsuite

TEST FLOW CREATION IN SMARTEST

*my_Flow

• F

3. Element insertion Testsuite

TEST FLOW CREATION IN SMARTEST

PROPERTIES VIEW

Double-click on Testsuite will open the Properties view

3. Element insertion Bin

TEST FLOW CREATION IN SMARTEST

4. Save testflow

TEST FLOW CREATION IN SMARTEST

TEST FLOW EXECUTION IN SMARTEST

TEST FLOW EXECUTION IN SMARTEST

Lab & Exercises:

) 74ACT299 Test Program Development: First Test Flow (off-line + on-line)

LEARNING STEPS

• Production Test Flow

DC TESTS

- Purpose
 - Verify device DC performances, once functionality is OK
- Classical Tests
 - V_{IL}/V_{IH} , V_{OL}/V_{OH}

Can be based on functional tests or on V/I measurements

V_{IL}/V_{IH} TEST

- Purpose
 - Ensure that the input pins can correctly sense the proper logic levels when programmed $V_{\rm IL}/V_{\rm IH}$ voltages are applied
- Principle
 - Functional test with driver levels configured at datasheet V_{IL}/V_{IH} values for input pins (relaxed constraints on comparator levels for output pins)

DC Electrical Characteristics for ACT

	Symbol		Parameter	v _{cc}	V_{CC} $T_A = 25^{\circ}C$		T _A = −40°C to +85°C		Conditions	
			r urumotor	(V)	Тур	Guaranteed Limits		onito	Contaitions	
	V _H	Minimum HIGH Level		4.5	1.5	2.0	2.0	V	$V_{OUT} = 0.1V$	
			Input Voltage	5.5	1.5	2.0	2.0	v	or V _{CC} – 0.1V	
	VL		Maximum LOW Level	3.0	1.5	0.8	0.8	V	V _{OUT} = 0.1V	
			Input Voltage	4.5	1.5	0.8	0.8	v	or $V_{CC} = 0.1V$	

V_{IL}/V_{IH} TEST

- Purpose
 - Ensure that the input pins can correctly sense the proper logic levels when programmed $V_{\rm IL}/V_{\rm IH}$ voltages are applied
- Principle
 - Iterations of functional test with changing of $V_{\rm IL}/V_{\rm IH}$ values for input pins (relaxed constraints on comparator levels for output pins)

V_{IL}/V_{IH} Test in SmarTest

Test Procedure

- 1. Set V_{IL} to low pass level Execute functional test
- Set V_{IH} to high pass level
 Set back V_{IL} to nominal level
 Execute functional test

- 3. Return FAIL if either execution fails, otherwise return PASS
- * V_{IL}/V_{IH} measurement: iterations of steps 1 & 2 with incremental change of V_{IL}/V_{IH} setting to identify P/F transition (meas. value = last Pass value) Return FAIL if measured V_{IL} < low pass level or measured V_{IH} > high pass level, otherwise return PASS

V_{OL}/V_{OH} TEST

- Purpose
 - Verify voltage/current capabilities: ensure that the V_{OL}/V_{OH} voltages are not too much degraded while output pins deliver the specified I_{OL}/I_{OH} current
- Principle
 - Force I_{OL}/I_{OH} current on output pins and measure the corresponding V_{OL}/V_{OH} voltage

DC Electrical Characteristics for ACT

 V_{OI}/V_{OH} Test Result

FAIL otherwise

Symbol		hol	Parameter	V _{cc}	T _A =	25°C	T _A = −40°C to +85°C	Unite	Conditions	
			ratameter	(V)	Typ Guaranteed Limits		Onits	Conditions		
	V _{OH}		Minimum HIGH Level	4.5	4.49	4.4	4.4	V	Jaura - 60 mA	
				5.5	5.49	5.4	5.4	v	1001 = -20 hA	
									$V_{IN} = V_{IL} \text{ or } V_{IH}$	
				4.5	0.0001	3.86	3.76	V 🔇	l _{он} = -24 mA	
				5.5		4.86	4.76		I _{OH} = -24 mA (Note 5)	
	V _{OL}		Maximum LOW Level	4.5	0.001	0.1	0.1	V	Jaure = 50 µ A	
L			Output Voltage	5.5	0.001	0.1	0.1	v	1001 - 20 hV	
									$V_{IN} = V_{IL} \text{ or } V_{IH}$	
				4.5		0.36	0.44	V 🔇	l _{OL} = 24 mA	
				5.5		0.36	0.44		I _{OL} = 24 mA (Note 5)	

PASS if $V_{OL-meas} \leq V_{OL-limit} \& V_{OH-meas} \geq V_{OH}$ limit

104

V_{OL}/V_{OH} TEST

- Purpose
 - Verify voltage/current capabilities: ensure that the V_{OL}/V_{OH} voltages are not too much degraded while output pins deliver the specified I_{OL}/I_{OH} current
- Principle
 - Force I_{OL}/I_{OH} current on output pins and measure the corresponding V_{OL}/V_{OH} voltage

DC Electrical Characteristics for ACT

Symb	ol Parameter	V _{cc}	V_{CC} $T_A = 25^{\circ}C$		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	Unite	Conditions	
Synis		(V)	Тур	Guaranteed Limits		Onits	Conditions	
V _{OH}	Minimum HIGH Level	4.5	4.49	4.4	4.4	V	E0A	
		5.5	5.49	5.4	5.4	v	ου μα	
							$V_{IN} = V_{IL} \text{ or } V_{IH}$	
		4.5	0.0001	3.86	3.76	V 🔇	1 _{0H} = -24 mA	
		5.5		4.86	4.76		I _{OH} = -24 mA (Note 5)	
V _{OL}	Maximum LOW Level	4.5	0.001	0.1	0.1	V	- 50 4	
	Output Voltage	5.5	0.001	0.1	0.1	× ×	I _{OUT} = 50 μA	
							$V_{IN} = V_{IL}$ or V_{IH}	
		4.5		0.36	0.44	V 🔇	l _{OL} = 24 mA	
		5.5		0.36	0.44		I _{OL} = 24 mA (Note 5)	

If measurement values are demanded:

- Iterations of functional test to identify P/F transition (meas. values = last Pass values)
- Comparison of meas. values with V_{OL}/V_{OH} limits to return a Pass/Fail result

V_{OL}/V_{OH} TEST IN SMARTEST

	Test Function: 'Output DC'		V _{ol}	І_{ОН}/	V_{OH}
	✓ Test Control Edit Doc			- *	
Pin list 📄	Output DC pin list ser_out			Î	
, ,		uni t	Іом	high	
	force current pass max/min	mA V	6 0.8	-6 3.8	
	Additional PMU parameters SPMU clamp voltage pass min/max settling time	V ms	-0. 1	1	
Instrument	 PPMU PPMU/term Programable Load SPMU SPMU/term 				
-	vec. range <u>10 - 20</u> output <u>Vout (\$P)</u>				
	4			↓	

Çņ

Test Procedure with PMU option

- 1. Execute test vectors; Scan for 'L' or 'H' state in a pin-by-pin basis
- 2. For first pin & for each vector: Connect PMU, Force Current@spec value & Measure Voltage

'H' state

- 3. Repeat for remaining pins
- 4. Compare to pass values

V_{OL}/V_{OH} TEST IN SMARTEST

Test Procedure with PMU option

1. Execute test vectors; Scan for 'L' or 'H' state in a pin-by-pin basis in the specified vector range

> Make sure that both 'L' & 'H' states are present in the specified vector range for the pins under test

FORM	AT C	Ρ	MR	mc	de	ser	in ser out io pins ;	
R1	std	1	-0	00	00	LL	LLLLLLL reset ;	
R1	std	1	1	00	00	XX	LLLLLLL hold ;	
R1	std	1	1	00	00	XX	XXXXXXXX hold (dummy) ;	
R1	std	1	1	11	00	HL	10000000 parallel load ;	
R1	std	1	1	01	00	LL	LHLLLLL shift right ;	
R1	std	1	1	01	00	LL	LLHLLLLL shift right ;	
R1	std	1	1	01	00	LL	LLLHLLLL shift right ;	
R1	std	1	1	01	00	LL	LLLLHLLL shift right ;	
R1	std	1	1	01	00	LL	LLLLHLL shift right ;	
R1	std	1	1	01	00	LL	LLLLLHL shift right ;	
R1	std	1	1	01	00	LH	LLLLLLH shift right ;	
R1	std	1	1	01	00	LL	LLLLLLL shift right ;	
R1	std	1	1	10	01	LH	LLLLLLH shift in left ;	
R1	std	1	1	10	01	LH	LLLLLHH shift in left ;	
R1	std	1	1	10	00	LL	LLLLLHHL shift left ;	
R1	std	1	1	10	00	LL	LLLLHHLL shift left ;	
R1	std	1	1	10	00	LL	LLLHHLLL shift left ;	
R1	std	1	1	10	00	LL	LLHHLLLL shift left ;	
R1	std	1	1	10	00	LL	LHHLLLLL shift left ;	
R1	std	1	1	10	00	HL	HHLLLLLL shift left ;	
R1	std	1	1	10	00	HL	HLLLLLL shift left ;	
R10	std	1	1	00	00	XX	HLLLLLL hold ;	

V_{OL}/V_{OH} TEST IN SMARTEST

	Test Function: 'Output DC'		V _{ol}	І_{ОН}/	V _{OH}
	✓ Test Control Edit Doc			- *	
Pin list	Output DC pin list ser_out			Î	
		uni t	low	high	
	force current pass max/min	mA V	6 0.8	-6 3.8	
	Additional PMU parameters SPMU clamp voltage pass min/max settling time	V ms	-0. 1	1	
Instrument	 PPMU PPMII/term Programable Load SPMU SPMU/term 				
onfm 🧥	vec. range <u>10 - 20</u> output Vout (\$P)				
	←			→	1

Test Procedure with PL option

- 1. Set V_{OL} to low pass level Set active load to I_{OI} Execute functional test
- 2. Set back V_{OL} to nominal level Set V_{OH} to high pass level Set active load to I_{OH} Execute functional test

- 3. Return FAIL if either execution fails, otherwise return PASS
- V_{OI}/V_{OH} measurement: iterations of steps 1 & 2 with incremental change of V_{OI}/V_{OH} setting to identify P/F transition (meas. value = last Pass value); Return FAIL if measured V_{ol} > low pass level or measured V_{OH} < high pass level, otherwise return PASS
AC TESTS

- Purpose
 - Verify device AC performances, once functionality & DC performances are OK
- Classical Tests
 - Setup & hold times (inputs), propagation delay (outputs), frequency

All AC tests are based on functional tests

AC TESTS

• Principle

cntn

- Pass/Fail Results: <u>one functional test</u> performed with edge position set at limit value w.r.t. datasheet specification for the targeted performance
- Measurement Values: <u>iterations of functional test</u> with changing of edge position in order to identify Pass/Fail transition (meas. value = last Pass value); Comparison of meas. value with datasheet specification to return a Pass/Fail result

111

AC TESTS

- Purpose
 - Verify device AC performances, once functionality & DC performances are OK
- Classical Tests
 - Setup & hold times (inputs), propagation delay (outputs), frequency

SETUP TIME TEST

- Definition
 - <u>Minimum</u> amount of time the data input must be held steady <u>before</u> the transition of a reference signal (clock)

AC Operating Requirements for ACT

Test performed on input pins only

Appropriate WF definition required (3 edges with SBC format to handle both setup)

		Vcc	T _A = +25°C C _L = 50 pF		T _A = -40°C to +85°C	Units
Symbol	Parameter	(V)			C _L = 50 pF	
		(Note 10)	Тур	Guar	anteed Minimum	ĺ
è	Setup Time, HIGH or LOW S _n or S _n to CP	5.0	2.0	5.0	5.5	ns
н	Hold Time, HIGH or LOW S ₀ or S ₁ to CP	5.0	-2.0	1.0	1.0	ns
8	Setup Time, HIGH or LOW I/On to CP	5.0	1.5	4.0	4.5	ns
ĥ	Hold Time, HIGH or LOW I/On to CP	5.0	-1.0	1.0	1.0	ns
8	Setup Time, HIGH or LOW DS ₀ or DS ₇ to CP	5.0	1.5	4.5	5.0	ns
н	Hold Time, HIGH or LOW DS ₀ or DS ₇ to CP	5.0	-1.0	1.0	1.0	ns
w	CP Pulse Width HIGH or LOW	5.0	2.0	4.0	4.5	ns
w	MR Pulse Width, LOW	5.0	2.0	3.5	3.5	ns
REC	Recovery Time, MR to CP	5.0	0	1.5	1.5	ns

SETUP TIME TEST IN SMARTEST

Definition

Cntr

- <u>Minimum</u> amount of time the data input must be held steady <u>before</u> the transition of a reference signal (clock)
- Test performed on input pins only

Test Function: 'Setup Time'

	 Test Control 	
	Edit Doc	
Pin list 📫	Setup Time pin list ser_in	
e under focus ≓ erence (optional) 🛁	edge/param devcyc d2 [ref. pin/time] LE CP [ref. devcyc] pass setup time ns 5 Conserval Servial Servial Servial	
	output <mark>tsu (\$P)</mark>	
		구 (구

HOLD TIME TEST

- Definition
 - <u>Minimum</u> amount of time the data input must be held steady <u>after</u> the transition of a reference signal (clock)

AC Operating Requirements for ACT

• Test performed on input pins only

		Vcc	T _A = +25°C		T _A = -40°C to +85°C	
Symbol	Parameter	(V)	C _L =	50 pF	C _L = 50 pF	Units
		(Note 10)	Тур	Guar	anteed Minimum	
te	Setup Time, HIGH or LOW S ₀ or S ₁ to CP	5.0	2.0	5.0	5.5	ns
h	Hold Time, HIGH or LOW Sn or S1 to CP	5.0	-2.0	1.0	1.0	ns
la l	Setup Time, HIGH or LOW I/O _n to CP	5.0	1.5	4.0	4.5	ns
ĥ	Hold Time, HIGH or LOW I/On to CP	5.0	-1.0	1.0	1.0	ns
8	Setup Time, HIGH or LOW DS ₀ or DS ₇ to CP	5.0	1.5	4.5	5.0	ns
н	Hold Time, HIGH or LOW DSn or DS7 to CP	5.0	-1.0	1.0	1.0	ns
w	CP Pulse Width HIGH or LOW	5.0	2.0	4.0	4.5	ns
w	MR Pulse Width, LOW	5.0	2.0	3.5	3.5	ns
REC	Recovery Time, MR to CP	5.0	0	1.5	1.5	ns

HOLD TIME TEST IN SMARTEST

Definition

CPTr

- <u>Minimum</u> amount of time the data input must be held steady <u>after</u> the transition of a reference signal (clock)
- Test performed on input pins only

Test Control Edit Doc Hold Time Pin list pin list DS0,DS7 Edge under focus edge/param devoyo d3 [ref. pin/time] IF Reference (optional) [ref, devoyc] pass hold time ns Limit 🔿 serial /alue parallel thd (≸P) output

Test Function: 'Hold Time'

PROPAGATION DELAY TEST

- Definition
 - <u>Maximum</u> amount of time that ensures the presence of the data <u>after</u> a transition of a reference signal (input or clock)
- Test performed on output pins only

Symbol	Parameter	V _{CC} (V) (Note 9)	T _A = +25°C C _L = 50 pF			T _A = -40°C to +85°C C _L = 50 pF		Units
			f _{MAX}	Maximum Input Frequency	5.0	120	170	
t _{PLH}	Propagation Delay CP to Q ₀ or Q ₇ (Shift Left or Right)	5.0	4.0	8.5	12.5	3.0	14.0	ns
t _{PHL}	Propagation Delay CP to Q ₀ or Q ₇ (Shift Left or Right)	5.0	4.0	9.0	13.5	3.5	15.0	ns
t _{PLH}	Propagation Delay CP to I/O _n	5.0	4.5	8.5	12.5	4.5	13.5	ns
t _{PHL}	Propagation Delay CP to I/On	5.0	5.0	9.5	15.0	4.5	16.5	ns
t _{PHL}	Propagation Delay MR to Q ₀ or Q ₇	5.0	4.0	14.0	15.0	4.0	18.0	ns
t _{PHL}	Propagation Delay MR to I/O	5.0	4.0	13.0	14.5	3.5	17.5	ns

.....

PROPAGATION DELAY TEST IN SMARTEST

Definition

CPTI

- <u>Maximum</u> amount of time that ensures the presence of the data <u>after</u> a transition of a reference signal (input or clock)
- Test performed on output pins only

Test Control Edit Doc Propagation Delay and Data Hold Time Pin list pin list ser_out Edge under focus edge/param devoyo r1 ref. pin/time] IF CP Reference (optional) devoucu prop delay] ns [pass data hold] .imit ns **Jalue** PD/DH (\$P) output

Test Function: 'Prop Delay'

Lab & Exercises:

• Implementation of Parametric Tests on 74ACT299 (off-line + on-line)

Questions about Parametric Tests

The END

Digital Test Training on V93k ATE

